Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE
نویسندگان
چکیده
منابع مشابه
Turbulent pipe flow at extreme Reynolds numbers.
Both the inherent intractability and complex beauty of turbulence reside in its large range of physical and temporal scales. This range of scales is captured by the Reynolds number, which in nature and in many engineering applications can be as large as 10(5)-10(6). Here, we report turbulence measurements over an unprecedented range of Reynolds numbers using a unique combination of a high-press...
متن کاملLinearized pipe flow to Reynolds number 107
A Fourier–Chebyshev Petrov–Galerkin spectral method is described for high-accuracy computation of linearized dynamics for flow in an infinite circular pipe. Our code is unusual in being based on solenoidal velocity variables and in being written in MATLAB. Systematic studies are presented of the dependence of eigenvalues, transient growth factors, and other quantities on the axial and azimuthal...
متن کاملAsymptotic scaling in turbulent pipe flow.
The streamwise velocity component in turbulent pipe flow is assessed to determine whether it exhibits asymptotic behaviour that is indicative of high Reynolds numbers. The asymptotic behaviour of both the mean velocity (in the form of the log law) and that of the second moment of the streamwise component of velocity in the outer and overlap regions is consistent with the development of spectral...
متن کاملThe critical layer in pipe flow at high Reynolds number.
We report the computation of a family of travelling wave solutions of pipe flow up to Re=75000. As in all lower branch solutions, streaks and rolls feature prominently in these solutions. For large Re, these solutions develop a critical layer away from the wall. Although the solutions are linearly unstable, the two unstable eigenvalues approach 0 as Re-->infinity at rates given by Re-0.41 and R...
متن کاملStructure and dynamics of low Reynolds number turbulent pipe flow.
Using large-scale numerical calculations, we explore the proper orthogonal decomposition of low Reynolds number turbulent pipe flow, using both the translational invariant (Fourier) method and the method of snapshots. Each method has benefits and drawbacks, making the 'best' choice dependent on the purpose of the analysis. Owing to its construction, the Fourier method includes all the flow fiel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
سال: 2017
ISSN: 1364-503X,1471-2962
DOI: 10.1098/rsta.2016.0187